More Complex than Previously Thought – Part X – Internal Organization of Bacteria

A recent paper finds that organization within bacteria is more complex than previously thought:

Simple visual inspection of bacteria indicated that, at least in some otherwise symmetric cells, structures such as flagella were often seen at a single pole. Because these structures are composed of proteins, it was not clear how to reconcile these observations of morphological asymmetry with the widely held view of bacteria as unstructured “bags of enzymes.” However, over the last decade, numerous GFP tagged proteins have been found at specific intracellular locations such as the poles of the cells, indicating that bacteria have a high degree of intracellular organization. Here we will explore the role of chromosomal asymmetry and the presence of “new” and “old” poles that result from the cytokinesis of rod-shaped cells in establishing bipolar and monopolar protein localization patterns. This article is intended to be illustrative, not exhaustive, so we have focused on examples drawn largely from Caulobacter crescentus and Bacillus subtilis, two bacteria that undergo dramatic morphological transformation. We will highlight how breaking monopolar symmetry is essential for the correct development of these organisms.1

1). Dworkin, J. (2009). Cellular Polarity in Prokaryotic Organisms.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: